FREE ELECTRONIC LIBRARY - Abstracts, books, theses

Pages:   || 2 | 3 | 4 | 5 |   ...   | 83 |

«EUROPEAN COMMISSION Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques for the Textiles Industry July 2003 ...»

-- [ Page 1 ] --


Integrated Pollution Prevention and Control (IPPC)

Reference Document on Best Available Techniques for

the Textiles Industry

July 2003

This document is one of a series of foreseen documents as below (at the time of writing, not all

documents have been drafted):

Full title BREF code

Reference Document on Best Available Techniques for Intensive Rearing of Poultry and Pigs ILF Reference Document on the General Principles of Monitoring MON Reference Document on Best Available Techniques for the Tanning of Hides and Skins TAN Reference Document on Best Available Techniques in the Glass Manufacturing Industry GLS Reference Document on Best Available Techniques in the Pulp and Paper Industry PP Reference Document on Best Available Techniques on the Production of Iron and Steel I&S Reference Document on Best Available Techniques in the Cement and Lime Manufacturing Industries CL Reference Document on the Application of Best Available Techniques to Industrial Cooling Systems CV Reference Document on Best Available Techniques in the Chlor – Alkali Manufacturing Industry CAK Reference Document on Best Available Techniques in the Ferrous Metals Processing Industry FMP Reference Document on Best Available Techniques in the Non Ferrous Metals Industries NFM Reference Document on Best Available Techniques for the Textiles Industry TXT Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries REF Reference Document on Best Available Techniques in the Large Volume Organic Chemical Industry LVOC Reference Document on Best Available Techniques in the Waste Water and Waste Gas CWW Treatment/Management Systems in the Chemical Sector Reference Document on Best Available Techniques in the Food, Drink and Milk Industry FM Reference Document on Best Available Techniques in the Smitheries and Foundries Industry SF Reference Document on Best Available Techniques on Emissions from Storage ESB Reference Document on Best Available Techniques on Economics and Cross-Media Effects ECM Reference Document on Best Available Techniques for Large Combustion Plants LCP Reference Document on Best Available Techniques in the Slaughterhouses and Animals By-products SA Industries Reference Document on Best Available Techniques for Management of Tailings and Waste-Rock in

–  –  –



This reference document on best available techniques in the textile industry reflects an information exchange carried out according to Article 16(2) of Council Directive 96/61/EC. The document has to be seen in the light of the preface, which describes the objective of the document and its use.

This document covers the industrial activities specified in section 6.2 of Annex I of the IPPC Directive 96/61/EC, namely: “Plants for pretreatment (operations such as washing, bleaching, mercerisation) or dyeing of fibres or textiles where the treatment capacity exceeds 10 tonnes per day”.

In addition, the BREF contains a number of annexes, which provide supplementary information about textile auxiliaries, dyes and pigments, textile machinery, typical recipes, etc.

The objective of this executive summary is to summarise the main findings of the document.

However, since it is impossible to reflect all its complexities in a short summary, only the main text in its entirety should be used as a reference in the determination of BAT for any particular installation.


The textile industry is one of the longest and most complicated industrial chains in manufacturing industry. It is a fragmented and heterogeneous sector dominated by SMEs, with a demand mainly driven by three main end-uses: clothing, home furnishing and industrial use.

Italy is by far the leading European producer for textiles, followed by Germany, the UK, France and Spain (in that order), together accounting for over 80 % of the production in the EU.

Belgium, France, Germany and the UK are the main European producers in the carpets sector.

In 2000 the European textile and clothing industry represented 3.4 % of the EU manufacturing industry’s turnover, 3.8 % of the added value and 6.9 % of the industrial employement.

The textile industry is composed of a wide number of sub-sectors, covering the entire production cycle from the production of raw materials (man-made fibres) to semi-processed (yarn, woven and knitted fabrics with their finishing processes) and final products (carpets, home textiles, clothing and industrial use textiles). As the scope of the document is confined to those activities that involve wet processes, three main sub-sectors have been identified: wool scouring, textile finishing (excluding floor-covering) and the carpet sector.


The textile chain begins with the production or harvest of raw fibre. The so-called “finishing processes” (i.e. pretreatment, dyeing, printing, finishing and coating, including washing and drying) represent the core of the applied processes and techniques in this BREF. Upstream processes such as, for example, synthetic fibre manufacturing, spinning, weaving, knitting, etc.

are also briefly described in the document as they may have a significant influence on the environmental impact of the subsequent wet processing activities. The “finishing processes” can take place at different stages of the production process (i.e. on fabric, yarn, loose fibre, etc.), the sequence of treatments being very variable and dependent on the requirements of the final user.

Firstly the finishing treatments are described as unit processes without considering the possible sequences in which they can be applied. Later in Chapter 2, some typical categories of industries have been identified within the wool scouring, the textile finishing and the carpet sector and the process sequences briefly described.

–  –  –


The main environmental concern in the textile industry is about the amount of water discharged and the chemical load it carries. Other important issues are energy consumption, air emissions, solid wastes and odours, which can be a significant nuisance in certain treatments.

Air emissions are usually collected at their point of origin. Because they have long been controlled in different countries, there are good historical data on air emissions from specific processes. This is not the case with emissions to water. The various streams coming from the different processes are mixed together to produce a final effluent whose characteristics are the result of a complex combination of factors such as, the types of fibres and make-ups processed, the techniques applied and the types of chemicals and auxiliaries used.

Since data available about water effluents from specific processes is very poor, it has proved appropriate to identify narrow categories of textile mills and to compare the overall mass streams between mills belonging to the same category. This approach allows a preliminary rough assessment in which, by comparing the specific consumption and emission levels of mills within the same category, it is possible to verify given data and identify macroscopic differences between the different activities. Input/output considerations are therefore addressed in the BREF for a number of typical categories of mills, starting from overviews of the overall mass streams and ending in a more detailed analysis of single processes when data is available. The key findings about some processes of particular concern are reported in this summary.

Wool scouring with water leads to the discharge of an effluent with a high organic content (2 to 15 l/kg of greasy wool at about 150 - 500g COD/kg of wool) and variable amounts of micropollutants resulting from the pesticides applied on the sheep. The most common pesticides are organophosphorous (OP), synthetic pyrethroids (SP) and insect growth regulators (IGR).

Organochlorine (OC) pesticides are still found on wool from certain grower countries.

A large percentage of the total emission load from textile industry activities is attributable to substances that are already on the raw material before it enters the finishing mill (e.g. impurities and associated materials for natural fibres, preparation agents, spinning lubricants, sizing agents, etc.). All these substances are usually removed from the fibre during the pretreatment process before colouring and finishing. The removal of auxiliaries such as, spinning lubricants, knitting oils and preparation agents by wet treatment may lead to the discharge not only of hard-tobiodegrade organic substances such as mineral oils, but also of hazardous compounds such as polyaromatic hydrocarbons, APEO and biocides. Typical COD loads are in the order of 40 - 80 g/kg fibre. When the substrate is submitted to a dry process (heat-setting) before washing, the auxiliaries present on the substrate become airborne (emission factors of 10 - 16 g C/kg are typical of mineral oil-based compounds).

The washing water from the desizing of cotton and cotton-blend fabrics may contain 70 % of the total COD load in the final effluent. The emission factor can well be in the order of 95 g COD/kg of fabric, with COD concentrations often above 20000 mg COD/l.

Sodium hypochlorite bleaching gives rise to secondary reactions that form organic halogen compounds commonly measured as AOX (trichloromethane accounts for the bulk of the compounds formed). For the combined application of hypochlorite (1st step) and hydrogen peroxide (2nd step) values of 90 - 100 mg Cl/l of AOX have been observed from the exhausted NaClO-bleaching bath. Concentrations up to 6 mg Cl/l can still be found in the spent H2O2bleaching bath, due to the carry over of the substrate from the previous bath.

Compared to sodium hypochlorite, the amount of AOX formed during chlorite bleaching is much lower. Recent investigations have shown that the formation of AOX is not caused by the sodium chlorite itself, but rather by the chlorine or hypochlorite present as impurities or are used as activating agents. The handling and storage of sodium chlorite needs particular attention because of toxicity, corrosion and explosion risks.

–  –  –

In hydrogen peroxide bleaching the environmental concerns are associated with the use of strong complexing agents (stabilisers).

A strong alkaline effluent (40 - 50 g NaOH/l) is produced if the rinsing water after mercerising is not recovered or re-used.

Apart from a few exceptions (e.g. the thermosol process, pigment dyeing, etc.), most of the emissions originating from the dyeing process are emissions to water. Water-polluting substances can originate from the dyes themselves (e.g. aquatic toxicity, metals, colour), auxiliaries contained in the dye formulation (e.g. dispersing agents, anti-foaming agents, etc.), basic chemicals and auxiliaries used in dyeing processes (e.g. alkali, salts, reducing and oxidising agents, etc.) and residual contaminants present on the fibre (e.g. residues of pesticides on wool, spin finishes on synthetic fibres). Consumption and emission levels are strongly related to the type of fibre, the make-up, the dyeing technique and the machinery employed.

In batch dyeing, the concentration levels vary greatly in the dyeing sequence. Generally, spent dye baths have the highest concentration levels (values well above 5000 mg COD/l are common). The contribution of dyeing auxiliaries (e.g. dispersing and levelling agents) to the COD load is especially noticeable when dyeing with vat or disperse dyes. Operations like soaping, reductive aftertreatment and softening are also associated with high values of COD.

Rinsing baths show concentrations 10 - 100 times lower than the exhausted dyeing bath and water consumption 2 to 5 times higher than for the dyeing process itself.

In continuous and semi-continuous dyeing, the water consumption is lower than in batch dyeing processes, but the discharge of highly concentrated residual dyeing-liquors can result in higher pollution load when short runs of material are processed (COD attributable to the dyestuffs may be in the order of 2 - 200 g/l). The padding technique is still the most commonly applied. The quantity of liquor in the padder can range from 10 - 15 litres for modern designs to 100 litres for conventional padders. The residual amount in the preparation tank can range from a few litres under optimised control conditions to up to 150 - 200 l. The total quantity of residual liquor increases with the number of batches per day.

Typical emission sources in printing processes include printing paste residues, waste water from wash-off and cleaning operations and volatile organic compounds from drying and fixing.

Losses of printing pastes are particularly noticeable in rotary screen printing (losses of 6.5 - 8.5 kg per colour applied are common for textiles). With short runs (i.e. less than 250 m) the amount of losses may be higher than the quantity of paste printed on the textile substrate.

Water consumption levels for cleaning of the equipment at the end of each run are in the order of about 500 l (excluding water for cleaning the printing belt). Printing pastes contain substances with high air emission potential (e.g. ammonia, formaldehyde, methanol and other alcohols, esters, aliphatic hydrocarbons, monomers such as, acrylates, vinylacetate, styrene, acrylonitrile, etc.).

Since most continuous finishing processes do not require washing operations after curing, water emissions are restricted to the system losses and to the water used to clean the equipment. The amount of residual liquors is in the range of 0.5 to 35 % of the total amount of finishing liquor prepared (the lower value is for integrated mills, whereas higher values are typical of textile mills processing small lots and different types of substrates). Too often these liquors are drained and mixed with other effluents. The COD concentration can easily be in the range of 130 - 200 g/l. Often the ingredients of the finishing formulations are non-biodegradable, nonbioeliminable and sometimes also toxic (e.g. biocides). In the drying and curing operations, air emissions are associated with the volatility of the ingredients of the formulations and with the carry-over from upstream processes (e.g. textiles previously treated with chlorinated carriers or perchloroethylene).

Textiles Industry iii Executive Summary Water washing processes contribute to water and energy consumption. The polluting load of the washing water is related to the pollutants carried by the water stream (e.g. impurities removed from the fabric, chemicals from previous processes, detergents and other auxiliaries used during washing). The use of organic halogenated solvents (persistent substances) for dry cleaning may give rise to diffuse emissions, resulting in groundwater and soil pollution and may also have negative effects on the air emissions from high-temperature downstream processes.


General good management practices General good management practises range from staff education and training to the definition of well-documented procedures for equipment maintenance, chemical storage, handling, dosing and dispensing. Improved knowledge of the inputs and outputs of the process is also an essential part of good management. This includes inputs of textile raw material, chemicals, heat, power and water, and outputs of product, waste water, air emissions, sludge, solid wastes and byproducts. Monitoring process inputs and outputs is the starting point for identifying options and priorities for improving environmental and economic performance.

Measures for improving the quality and quantity of chemicals used include regular revision and assessment of the recipes, optimal scheduling in production, use of high quality water in wet processes, etc. Systems for automated control of process parameters (e.g. temperature, liquor level, chemicals feed) allow a tighter control of the process for improved right-first-time performance, with minimum surplus of applied chemicals and auxiliaries.

Pages:   || 2 | 3 | 4 | 5 |   ...   | 83 |

Similar works:

«1. The groin dramatically influences the rest of the body and the rest of the body dramatically influences the groin 2. Description of an ACL injury mechanism with the fault or cause in the front butt 3. Understanding the loading of the front butt requires a comprehensive strategic analysis 4. If the groin can be properly lengthened, stimulated, proprioceptively enhanced and strengthened, it can significantly contribute to the success of all forms of function 5. Determine what facilitates the...»

«Tentatives de suicide, prédire la récidive Tentatives de suicide, prédire la récidive avec des techniques d’apprentissage statistique Philippe Combes1, Stéphanie Combes2, Martin Monziols2 CH MONTPERRIN, Paris, France philippe.combes@ch-montperrin.fr INSEE, Paris, France stephanie.combes@insee.fr martin.monziols@ensae-paristech.fr Résumé : Selon l’institut de veille sanitaire, le suicide est responsable de 10500 décès par an contre 176000 à 200000 hospitalisations pour tentative...»

«HISTO-ANATOMICAL INVESTIGATIONS ON SOME CUSCUTA SPECIES C. TOMA. ASPAZlA ANDRONACHE. IRINA I'OMA The authors investigated the stem and haustoria structure in three C~iscwtaspecies parasite on different dicotyledonous species. In all 3 species. the stems have not tector hairs; the vascular bundles are not typical, being collaterally closed. the mechanical tissues are weakly developed or absent. The haustoria penetrate the host plant, especially in the phloem, sometimes arising in the pith The...»

«ETSI TR 102 021-11 V1.1.1 (2011-07) Technical Report Terrestrial Trunked Radio (TETRA); User Requirement Specification TETRA Release 2.1; Part 11: Over The Air Management 2 ETSI TR 102 021-11 V1.1.1 (2011-07) Reference DTR/TETRA-01198 Keywords radio, TETRA, user ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06)...»

«FACTORY ACCEPTANCE TESTING INTRODUCTION FAT refers to a Factory Acceptance Test. This is a way to ensure that equipment/systems being purchased meet the agreed upon design specifications. Ideally this happens before arriving at the customer’s plant, however, for complex systems with high integration, tests may need to be performed at the customer’s location. Factory Acceptance Tests allow any issues to be corrected either at the vendor’s location or before production – leveraging the...»

«Organized by Financial Management Service Foundation on 7th and 8th March, 2008 Financial Management Service Foundation “Accountability House” A-5, Sector 26, NOIDA 201301 Ph: 0120-2546732, 33, 44, 45 Email : fmsf@fmsfindia.org Report on the Workshop on Social Accountability Standards Overall Objective of the Workshop Social Accountability as a part of governance mechanism of NGOs has been in the focus of FMSF in the recent years. In fact, Social accountability is an issue most of the...»

«Native Forest Silviculture TECHNICAL BULLETIN No. 6 Regeneration Surveys and Stocking Standards © Copyright Forestry Tasmania 79 Melville St. HOBART 7000 ISBN 1034-3261 February 2012 Acknowledgments The line drawings are by Fred Duncan. The cover graphic was prepared by Gerald Coombe.This bulletin should be cited as: Forestry Tasmania (2010). Regeneration surveys and stocking standards, Native Forest Silviculture Technical Bulletin No. 6, Forestry Tasmania, Hobart. Prepared by Lachie Clark,...»

«Monday, 25 July 2016 Use Food Preparation Equipment Knives Parts of a knife Knife-handling techniques * Grip: Hold the handle of a chef’s knife tightly with fingers curled and up against the heel of the knife. Having a firm but relaxed grip on the handle of the knife will allow for a more efficient cutting motion and will reduce the chances of the knife slipping, thereby preventing accidents. * Fingers of the free hand: These should be curled and used to hold the food in position. The...»

«60 More Things Every Electrician Should Know ETEL-01(02)-01 (2014-05-06) Table of Contents Part 1 – Technical Section Part 2 – Administrative Section Part 3 – MyConnection © British Columbia Safety Authority, 2014 60 MORE THINGS EVERY ELECTRICIAN SHOULD KNOW Part 1 – Technical Section 1) Working live is prohibited and contrary to the BC Electrical Code and WorkSafe regulations. Canadian Electrical Code Rule 2-304 (1) Disconnection (See Appendix B) (1) No repairs or alterations shall be...»

«Improved phase-unwrapping method using geometric constraints Guangliang Du1, Minmin Wang1, Canlin Zhou 1*,Shuchun Si1, Hui Li1, Zhenkun Lei2,Yanjie Li3 School of Physics, Shandong University, Jinan 250100, China Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China *Corresponding author: Tel: +8613256153609; E-mail address: canlinzhou@sdu.edu.cn Conventional...»

«© Copyright 2011 Magento, Inc. All rights reserved. No part of this Guide shall be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from Magento, Inc. CONTENTS 1 OVERVIEW OF THEMING IN MAGENTO SCOPE OF THIS DOCUMENT AUDIENCE PREREQUISITES ABOUT THIS GUIDE 2 MAGENTO DESIGN CONCEPTS AND TERMINOLOGY WEBSITES AND STORES DESIGN PACKAGES AND THEMES Themes Default themes Theme variations or...»

«Millionaire Traders How Everyday People Are Beating Wall Street at Its Own Game Kathy Lien Boris Schlossberg Millionaire Traders Millionaire Traders How Everyday People Are Beating Wall Street at Its Own Game Kathy Lien Boris Schlossberg Copyright 2007 by Kathy Lien and Boris Schlossberg. All rights reserved C Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. Wiley Bicentennial Logo: Richard J. Pacifico No part of this publication may be reproduced,...»

<<  HOME   |    CONTACTS
2017 www.sa.i-pdf.info - Abstracts, books, theses

Materials of this site are available for review, all rights belong to their respective owners.
If you do not agree with the fact that your material is placed on this site, please, email us, we will within 1-2 business days delete him.