FREE ELECTRONIC LIBRARY - Abstracts, books, theses

«A simple method to determine control valve performance and its impacts on control loop performance Michel Ruel p.eng., Top Control Inc. Keywords Process ...»

A simple method to determine control valve performance

and its impacts on control loop performance

Michel Ruel p.eng., Top Control Inc.


Process optimization, tuning, stiction, hysteresis, backlash, dead time, positionner, performance.


A control loop consists of the process, measurement, controller, and a final control element (valve,

damper, etc. and its associated equipment such as positionner, I/P). Optimal process control depends on

all of these components working properly. Hence, before tuning a loop, one must verify that each component is operating properly and that the design is appropriate.

Choosing the optimal PID tuning should be done after making sure all of the other components are working properly. Our experience in the field has shown us that the impact of good tuning is more important than equipment performance itself. We will discuss a method to determine if the valve is performing well and this is done while the process is running. We will demonstrate how a poorly performing valve will have a minimal effect on control loop performance if the tuning parameters are not optimal. However, if a control loop is tuned to achieve performance, the control valve behavior will have a major impact on performance.

Introduction In North America, the majority of control loops have not been tuned to reach optimal performance. Very often, during installation, the tuning parameters are left as the manufacturer defaults. When problems occur with control loops, people often tend to reduce the tuning parameters, as this is the quickest way to reduce instability.

For example, if a valve has some backlash, the loop will have a tendency to oscillate. If the technician reduces the tuning parameters, he will then hide the problem (which will get bigger and bigger as time goes by) and will also make the loop slower to respond.

Tuning should be considered a major part of a control loop. Why spend a lot of money on expensive equipment if we only use it to fraction of its potential?

It is hard to identify when a valve is damaged or needs to be replaced, if the tuning has not been done correctly.

In this article, disturbance responses of perfect and “real world” valves will be analyzed using aggressive and sluggish tuning. The results will show that tuning has a major impact on the performance of control loops.

Many criteria can be used to evaluate control loops:

• stability,

• overshoot,

• removing quickly a disturbance,

• etc.

Valves, non linear devices When a command has been given to a control valve for a new position, the behavior of the valve will vary depending on its position, its direction and the amplitude of the signal.


1. When the position change is small, the dead time of the valve is generally longer than it would be for a bigger change. In fact, the positioner must supply enough to overcome stiction. When changes are more important, the behavior of the valve is similar to a linear system.

2. When the signal is very big, saturation will prevent the valve from moving faster than a set pace.

3. Certain valves will not behave the same when they are opened and when they are closed.

4. Since the torque that moves the valve varies in accordance with the opening and the process conditions, the valve’s dynamic behavior is not the same on the entire range.

5. Backlash causes hysteresis.

6. Seals and seats cause stiction.

7. The positioner causes overshoot.

8. The inherent characteristic curve of the valve is often ignored during selection. Instead of reducing the gain variations according to the load, it increases them.

The effects of control valves Dead time When a simple position change is made, the dead time is generally long. Indeed, the positioner provides a small airflow and pressure slowly builds up.

If a positioner is not tuned to be sensitive, the dead time will be even longer.

Time constant (tau) The valve time constant is due to the actuator reservoir which fills with air as a first order system (time constant). If a positioner has been tuned too loosely, the time constant will be longer. Many manufacturers offer positioners with different capacities, depending on the size of the actuator. When bigger changes are made, the speed is limited and the time constant appears longer.

Hysteresis, Backlash, Dead Band

The position of a valve with hysteresis will vary whether the signal increases or decreases. Hysteresis usually comes from backlash, but is can also be caused by non-linearities such as seals or friction.

Hysteresis provokes oscillations and reduces performance. When a change occurs, hysteresis will also add to the dead time.

Backlash :If mechanical parts are loose, when reversing direction, the valve movement will be different from the signal.

Resolution:The resolution is the smallest increment of input signal in one direction for which movement of the valve is observed. Resolution is caused by a sensor like a wirewound resistor; each loop of wire produces an output jumping each time a new loop is reached. Also, digitizing a signal will do the same.

For example, the resolution for an 8 bits system is 1/256=0.4%.

–  –  –

Stiction Anything that comes in contact with the moving parts of a valve will create friction; the seats, the seal, etc.

It is not possible to move a valve with stiction unless the command is big enough to overcome this friction.

The problem becomes more obvious when an actuator is weak. When stiction occurs, the dead time will be longer as friction must be overcome before the valve will move. Stiction is the resistance to the start of motion, usually measured as the difference between the driving values required to overcome static friction upscale and down scale.

The word stiction is made from the words stick and friction.

For example, it is sometimes hard to move a piece of furniture. However, you apply pressure and it suddenly gives, moving rapidly. Similarly, stiction causes the piston of an air cylinder to suddenly lurch forward at the start of a stroke or to move jerkily during its travel.

Stiction is caused when the static (starting) friction exceeds the dynamic (moving) friction inside the valve.

Stiction describes the valve's stem (or shaft) sticking when small changes are attempted. Friction of a moving object is less than when it is stationary. Stiction can keep the stem from moving for small control input changes, and then the stem moves when the force is enough to free it. The result of stiction is that the force required to get the stem to move is more than is required to go to the desired stem position. In presence of stiction, the movement is jumpy.

Figure 4 Valve position

–  –  –

Positioner overshoot When overshoot occurs, the valve moves too far and this can destabilize the loop, particularly if the loop is fast.

Volumetric coefficient Cv The Cv must be chosen so the process gain is close to one. If the Cv is too small, the measure will never reach a sufficient value. However, if the Cv is too big; all the valve’s defects will be amplified.

Inherent characteristic curve If the proper inherent characteristic curve is not chosen, the process gain variations may be amplified rather than reduced.

The impact of the valve on the process model For fast processes such as flow and pressure, the dynamic response of the valve (dead time, time constant, positioner overshoot) will be important. However, hysteresis, stiction, Cv and the inherent characteristic curve always influence the behavior and the performance of the loop.

Criteria for good functioning Before setting the parameters of a controller, it is important to determine if the characteristics of the loop would allow sufficient performance.

Four 3s rule

–  –  –

If the process gain is too big, the problems of the valve will be amplified and the controller will have to be detuned. Performance will therefore be reduced.

Solution: Recalibrate the transmitter or reduce the Cv (valves are often too big).

Linearity The loop must be tuned within the range where maximum process gain is reached. However, this will decrease performance about the point where the process gain is minimal.

Solution: Change the inherent characteristic curve of the valve or use a characterizer between the controller and the valve.

Hysteresis Large hysteresis will cause the dead time to increase when the output signal’s amplitude is weak. This increase makes for a longer period (damped sine wave), since the process variable is close to the setpoint. The loop will then be destabilized.

Figure 5

–  –  –

Solution: fix the valve/positioner.

Stiction If the valve sticks, the controller output will slowly increase until the valve finally moves. If the stiction is large, the valve will then move too much This will cause the controller to reverse and try to move the valve in the opposite direction; however, stiction will create an overshoot again. The controller output looks like a sawtooth and the process variable looks like a square wave.

Figure 6 Solution: fix the valve/positioner.

Noise If too much noise is present, the loop cannot be tuned aggressively or the controller will amplify this noise.

This will cause the positioner to hunt back and forth, leading to a shorter valve life.

Solution: Eliminate or reduce everything that causes noise. The valve movement will be reduced by choosing an adequate filter.

Tuning of the controller parameters The goal is to obtain a compromise between performance and stability.

To obtain performance, it is best to use large values for each parameter (P, I, D).

To obtain stability it is best to use low values for each parameter (P,I,D).

A loop is robust when stability can be maintained while the characteristics of the process are changing.

However, it is often possible to improve the robustness as well as the performance of a control loop. This happens when the proportional gain is too high (not robust and unstable) and the integral time is too long (long response time).

Tests to determine the process characteristics and analyze the equipment To determine the process characteristics, it is necessary to do small bumps then a ramp. These tests are necessary to evaluate hysteresis (backlash and dead band), stiction and process gain. Also, asymmetry will be verified looking at the process moving in both directions. If possible, a series of bumps will be done to verify if the process is linear.

–  –  –

A fast valve is required when:

• the loop is fast

• the tuning of the controller has been chosen to maximize performance (aggressive or moderate tuning) Precision

A precise valve is required when:

• performance is important

• the loop is stable (and the loop’s parameters have been set correctly).

Setting the parameters Derivative has not been used in the simulation, since Lambda based tuning never uses it. In many processes, the use of the derivative will greatly increase performance when using moderately aggressive settings. The derivative also reduces problems caused by the control valve.

–  –  –

Simulation The following process was simulated to observe the impacts of stiction and hysteresis.

Gp=1, Dead time = 1 s, Time constant = 3 s, a white noise with a standard deviation of 0.1 % is added to the process variable.

The displayed values are in %.

–  –  –

To reduce stiction

• Select properly the valve and the actuator.

• Maintain your valves regularly.

• Buy a strong actuator and a good positionner.

• Check your valves often while the process is running, especially before a shutdown.

Credit The graphics were done using ExperTune from ExperTune Inc.

About the author:

Michel is a registered professional engineer, university lecturer, author of several publications and books

on instrumentation and control. Michel has 23 years of plant experience including these companies:

Monsanto Chemicals, Domtar Paper, Dow Corning and Shell Oil. He is experienced in solving unusual process control problems and he is also a pioneer in the implementation of fuzzy logic in process control.

–  –  –


K.J.Åstrom and T. Hägglund, “PID Controllers : Theory, Design and Tuning”, Instrument Society of America, Research Triangle Park, NC, USA, 1995 M. Ruel, “Loop Optimization: Troubleshooting”, Control Magazine, April 1999 M. Ruel, “Loop Optimization: How to tune a loop”, Control Magazine, May 1999 J.G. Ziegler and N.B. Nichols, “Optimum settings for automatic controllers”Trans, ASME, 64: 759-768, 1942

Similar works:

«U.S. COMMODITY FUTURES TRADING COMMISSION Three Lafayette Centre 1155 21st Street, NW, Washington, DC 20581 Telephone: (202) 418-5000 Facsimile: (202) 418-5521 www.cftc.gov a CFTC Letter No. 14-46 No-Action April 9, 2014 Division of Market Oversight Division of Swap Dealer and Intermediary Oversight Conditional No-Action Relief with respect to Swaps Trading on Certain Multilateral Trading Facilities Overseen by Competent Authorities Designated by European Union Member States This no-action...»

«BREAKING SOUL TIES AND TIONAL CURSES BY DR. E BERNARD JORDAN o Copyright 1993, by Dr. E. Bernard Jordan, Zoe Ministries, 4702 Farragut Road, Brooklyn, New York 11203. All rights reserved. No part of this writing may be reproduced in any form without permission in writing from the author. Printed in the United States of America. Unless otherwise noted, all Scripture references are taken from the King James version of the Bible. This book is dedicated to Joshua Nathaniel Jordan, who shall...»

«Cecilia R. Acquarone TEXTUALITY AND IDEOLOGY A Comparative Study of Edgar Allan Poe’s “The Murders in the Rue Morgue” and Jorge Luis Borges’ “Emma Zunz” Colección Cuadernillos UCEL UNIVERSIDAD DEL CENTRO EDUCATIVO LATINOAMERICANO Rosario Cecilia R. Acquarone es profesora en inglés por el Instituto de Enseñanza Superior Olga Cossettini y licenciada en lengua y literatura inglesas por la Universidad del Centro Educativo Latinoamericano. Es docente en las instituciones mencionadas,...»

«Bi6 Research Model correlated to AASL, Common Core and Grade Level Skills Below is a correlate of Mike Eisenberg's and Bob Berkowitz' Big6™ Skills with the Standards for the 21st-Century Learner developed by the American Association of School Librarians (AASL) to organize an introduction to research, along with Common Core State Standards Initiative, as well as the associated activities and skills by grade level. Big6 Step AASL Common Core Skills AASL Big6 Skill Common Core Standards Skills...»

«T & C Procedure October 2011 TESTING & COMMISSIONING PROCEDURE SUBTRANSMISSION UNDERGROUND CABLES Testing & Commissioning Proceedure Generic October 2011 Prepared by: Dennis Darke TABLE OF CONTENTS TABLE OF CONTENTS 1  PURPOSE 2  KEY TERMS & DEFINITIONS 3  TESTING & COMMISSIONING 3a  Commissioning Plan 3b  Tests 3c  Test Equipment. 3d  Authority for Placing Major Electrical/Plant Equipment into Service (CEPG2047) 3e  “As Installed” Detail 4  PRELIMINARY CHECKS 4a  QA Checks 4b ...»

«IN THE DISTRICT COURT OF OKLAHOMA COUNTY STATE OF OKLAHOMA Jean Bookout; Charles Schwarz, ) individually and as Personal ) Representative of the Estate of ) Barbara Schwarz, deceased; ) Richard Forrester Brandt, as ) Personal Representative of the ) Estate of Barbara Schwarz, ) deceased, ) ) Plaintiffs, ) ) vs. ) Case No. CJ-2008-7969 ) Toyota Motor Corporation; Toyota ) Motor Sales, U.S.A., Inc.; ) Toyota Motor Engineering and ) Manufacturing North America, ) Inc.; Aisan Industry Co., Ltd., )...»


«HOLD UNTIL RELEASED BY THE COMMITTEE Testimony Before the Senate Appropriations Subcommittee on Defense Witness Statement of HON Frank Kendall, Under Secretary of Defense for Acquisition, Technology & Logistics HON Stephen Welby, Assistant Secretary of Defense for Research & Engineering Dr. Arati Prabhakar, Director, Defense Advanced Research Projects Agency April 20, 2016 NOT FOR PUBLICATION UNTIL RELEASED BY THE SUBCOMMITTEE HOLD UNTIL RELEASED BY THE COMMITTEE Chairman Cochran, Vice Chairman...»

«Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 10, no. 2, pp. 123–139 (2006) A Factor-Two Approximation Algorithm for Two-Dimensional Phase-Unwrapping Reuven Bar-Yehuda and Irad Yavneh Department of Computer Science Technion—Israel Institute of Technology Haifa 32000, Israel reuven@cs.technion.ac.il irad@cs.technion.ac.il Abstract Two-dimensional phase unwrapping is the problem of deducing unambiguous “phase” from values known only modulo 2π. Many authors agree...»

«What Has Happened to Manliness? T Harvey C. Mansfield oday the very word “manliness” seems quaint and obsolete. We are in the process of making the English language gender neutral, and manliness, the quality of one gender, or rather, of one sex, seems to describe the essence of the enemy we are attacking, the evil we are eradicating. Recently I had a call from the Harvard alumni magazine asking me to comment on a former professor of mine now being honored. Responding too quickly, I said:...»

«SENSITIVE DATA SECURITY AND PROTECTION SYSTEMWIDE Audit Report 13-30 August 22, 2014 Members, Committee on Audit Lupe C. Garcia, Chair Adam Day, Vice Chair Rebecca D. Eisen Steven M. Glazer Hugo N. Morales Staff Vice Chancellor and Chief Audit Officer: Larry Mandel Senior Director: Michael Caldera IT Audit Manager: Greg Dove Internal Auditor: Kim Pham BOARD OF TRUSTEES THE CALIFORNIA STATE UNIVERSITY CONTENTS Executive Summary Introduction Background Purpose Scope and Methodology OBSERVATIONS,...»

«UDK 636.06 → 614.9 Stručni rad Professional paper STUDY ON OXYTETRACYCLINE RESIDUES IN COW’S MILK SAMPLES COLLECTED IN TETOVO, MACEDONIA FROM 2012 TO 2013 Mensur Kamberi, Kapllan Sulaj Summary The objective of this study was to determine the oxytetracycline residues in cow’s milk collected in farms of Tetovo in Macedonia. The cow’s milk samples produced in this area are controlled applying qualitative analytical tests for oxitetracycline residues in 262 milk samples through specific...»

<<  HOME   |    CONTACTS
2017 www.sa.i-pdf.info - Abstracts, books, theses

Materials of this site are available for review, all rights belong to their respective owners.
If you do not agree with the fact that your material is placed on this site, please, email us, we will within 1-2 business days delete him.